6 min read
Financial Data Scraper

Financial Data Scraper

A comprehensive financial data scraping and analytics tool designed for collecting, processing, and analyzing forex and cryptocurrency market data. This tool provides real-time data collection, historical data analysis, and advanced financial analytics for trading and research purposes.

Features

  • Multi-Source Data Collection - Scrape data from multiple financial sources
  • Real-time Data Streaming - Live market data collection and processing
  • Historical Data Analysis - Comprehensive historical data analysis
  • Technical Indicators - Built-in technical analysis indicators
  • Data Visualization - Interactive charts and data visualization
  • API Integration - Integration with popular financial APIs
  • Data Storage - Efficient data storage and management
  • Automated Scheduling - Automated data collection scheduling

Data Sources

Forex Data

  • Forex.com - Real-time forex data and historical prices
  • OANDA - Professional forex data and analytics
  • FXCM - Forex market data and trading information
  • Yahoo Finance - Free forex data and market information
  • Alpha Vantage - Real-time and historical forex data

Cryptocurrency Data

  • CoinGecko - Comprehensive cryptocurrency data
  • CoinMarketCap - Cryptocurrency market data and rankings
  • Binance API - Real-time crypto trading data
  • Coinbase Pro - Professional crypto trading data
  • Kraken API - Cryptocurrency exchange data

Alternative Data

  • News Sources - Financial news and sentiment data
  • Social Media - Social media sentiment analysis
  • Economic Indicators - Economic data and indicators
  • Central Bank Data - Central bank announcements and data

Data Collection

Web Scraping

  • HTML Parsing - BeautifulSoup and Scrapy for web scraping
  • API Integration - RESTful API integration for data collection
  • Rate Limiting - Intelligent rate limiting and request management
  • Error Handling - Robust error handling and retry mechanisms
  • Data Validation - Data quality validation and cleaning

Real-time Streaming

  • WebSocket Connections - Real-time data streaming via WebSockets
  • Event-driven Architecture - Event-driven data processing
  • Data Buffering - Efficient data buffering and processing
  • Connection Management - Automatic connection management and recovery

Analytics Capabilities

Technical Analysis

  • Moving Averages - Simple, exponential, and weighted moving averages
  • Oscillators - RSI, MACD, Stochastic, and other oscillators
  • Trend Indicators - ADX, Parabolic SAR, and trend indicators
  • Volume Analysis - Volume-based indicators and analysis
  • Pattern Recognition - Chart pattern recognition and analysis

Statistical Analysis

  • Descriptive Statistics - Mean, variance, skewness, kurtosis
  • Correlation Analysis - Asset correlation and cointegration analysis
  • Volatility Analysis - Historical and implied volatility analysis
  • Risk Metrics - Value at Risk, Expected Shortfall, and risk metrics
  • Performance Analysis - Return analysis and performance metrics

Machine Learning

  • Time Series Forecasting - ARIMA, SARIMA, and ML-based forecasting
  • Anomaly Detection - Detection of market anomalies and outliers
  • Sentiment Analysis - News and social media sentiment analysis
  • Feature Engineering - Automated feature engineering for ML models
  • Model Training - Automated model training and validation

Tech Stack

  • Language: Python 3.8+
  • Web Scraping: BeautifulSoup, Scrapy, Selenium
  • Data Processing: Pandas, NumPy, SciPy
  • Database: PostgreSQL, MongoDB, InfluxDB
  • Visualization: Matplotlib, Plotly, Dash
  • Machine Learning: Scikit-learn, TensorFlow, PyTorch
  • APIs: FastAPI, Flask for data serving

Installation & Setup

  1. Clone the repository:

    git clone https://github.com/1cbyc/financial-data-scraper.git
    cd financial-data-scraper
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Set up database:

    python setup_database.py
    
  4. Configure data sources:

    cp config.example.yaml config.yaml
    # Edit configuration with your API keys and preferences
    
  5. Start data collection:

    python scraper.py --source forex --symbols EUR/USD,GBP/USD
    

Usage Examples

Basic Data Collection

from financial_scraper import FinancialScraper

# Initialize scraper
scraper = FinancialScraper(
    api_keys={
        'alpha_vantage': 'your_api_key',
        'oanda': 'your_api_key'
    }
)

# Collect forex data
forex_data = scraper.collect_forex_data(
    symbols=['EUR/USD', 'GBP/USD'],
    timeframe='1h',
    start_date='2024-01-01',
    end_date='2024-12-31'
)

# Collect crypto data
crypto_data = scraper.collect_crypto_data(
    symbols=['BTC/USD', 'ETH/USD'],
    timeframe='1d'
)

Real-time Data Streaming

from data_streamer import DataStreamer

# Initialize streamer
streamer = DataStreamer()

# Start real-time streaming
def on_data(data):
    print(f"Received: {data}")

streamer.start_streaming(
    symbols=['EUR/USD', 'BTC/USD'],
    callback=on_data
)

Technical Analysis

from technical_analysis import TechnicalAnalyzer

# Initialize analyzer
analyzer = TechnicalAnalyzer()

# Calculate technical indicators
indicators = analyzer.calculate_indicators(
    data=forex_data,
    indicators=['sma', 'ema', 'rsi', 'macd']
)

# Generate trading signals
signals = analyzer.generate_signals(indicators)

Data Storage and Management

Database Schema

-- Market data table
CREATE TABLE market_data (
    id SERIAL PRIMARY KEY,
    symbol VARCHAR(20) NOT NULL,
    timestamp TIMESTAMP NOT NULL,
    open DECIMAL(10,5),
    high DECIMAL(10,5),
    low DECIMAL(10,5),
    close DECIMAL(10,5),
    volume DECIMAL(15,2),
    source VARCHAR(50),
    created_at TIMESTAMP DEFAULT NOW()
);

-- Technical indicators table
CREATE TABLE technical_indicators (
    id SERIAL PRIMARY KEY,
    symbol VARCHAR(20) NOT NULL,
    timestamp TIMESTAMP NOT NULL,
    indicator_name VARCHAR(50) NOT NULL,
    value DECIMAL(10,5),
    parameters JSONB
);

Data Processing Pipeline

  1. Data Collection - Collect data from multiple sources
  2. Data Cleaning - Clean and validate collected data
  3. Data Storage - Store data in appropriate databases
  4. Data Processing - Calculate technical indicators and analytics
  5. Data Serving - Serve processed data via APIs

Visualization and Reporting

Interactive Dashboards

  • Real-time Charts - Live market data visualization
  • Technical Analysis - Technical indicator charts
  • Performance Metrics - Performance and risk metrics
  • Correlation Analysis - Asset correlation visualization

Automated Reports

  • Daily Reports - Daily market summary and analysis
  • Weekly Reports - Weekly performance and trend analysis
  • Monthly Reports - Monthly comprehensive market analysis
  • Custom Reports - Customizable report generation

API Endpoints

Data Endpoints

GET /api/v1/data/{symbol} - Get historical data
GET /api/v1/real-time/{symbol} - Get real-time data
GET /api/v1/indicators/{symbol} - Get technical indicators
POST /api/v1/collect - Trigger data collection

Analytics Endpoints

GET /api/v1/analysis/{symbol} - Get market analysis
GET /api/v1/correlation - Get correlation analysis
GET /api/v1/volatility - Get volatility analysis
POST /api/v1/forecast - Generate price forecasts

Project Impact

This scraper has been used for:

  • Trading Systems - Data feed for algorithmic trading systems
  • Research - Academic and industry research
  • Risk Management - Market risk analysis and management
  • Portfolio Management - Portfolio analysis and optimization

Future Enhancements

  • Alternative Data - Integration with alternative data sources
  • AI/ML Integration - Advanced AI/ML capabilities
  • Cloud Deployment - Cloud-based data processing
  • Mobile App - Mobile data access and visualization
  • Real-time Alerts - Real-time market alerts and notifications