A comprehensive financial data scraping and analytics tool designed for collecting, processing, and analyzing forex and cryptocurrency market data. This tool provides real-time data collection, historical data analysis, and advanced financial analytics for trading and research purposes.
Features
- Multi-Source Data Collection - Scrape data from multiple financial sources
- Real-time Data Streaming - Live market data collection and processing
- Historical Data Analysis - Comprehensive historical data analysis
- Technical Indicators - Built-in technical analysis indicators
- Data Visualization - Interactive charts and data visualization
- API Integration - Integration with popular financial APIs
- Data Storage - Efficient data storage and management
- Automated Scheduling - Automated data collection scheduling
Data Sources
Forex Data
- Forex.com - Real-time forex data and historical prices
- OANDA - Professional forex data and analytics
- FXCM - Forex market data and trading information
- Yahoo Finance - Free forex data and market information
- Alpha Vantage - Real-time and historical forex data
Cryptocurrency Data
- CoinGecko - Comprehensive cryptocurrency data
- CoinMarketCap - Cryptocurrency market data and rankings
- Binance API - Real-time crypto trading data
- Coinbase Pro - Professional crypto trading data
- Kraken API - Cryptocurrency exchange data
Alternative Data
- News Sources - Financial news and sentiment data
- Social Media - Social media sentiment analysis
- Economic Indicators - Economic data and indicators
- Central Bank Data - Central bank announcements and data
Data Collection
Web Scraping
- HTML Parsing - BeautifulSoup and Scrapy for web scraping
- API Integration - RESTful API integration for data collection
- Rate Limiting - Intelligent rate limiting and request management
- Error Handling - Robust error handling and retry mechanisms
- Data Validation - Data quality validation and cleaning
Real-time Streaming
- WebSocket Connections - Real-time data streaming via WebSockets
- Event-driven Architecture - Event-driven data processing
- Data Buffering - Efficient data buffering and processing
- Connection Management - Automatic connection management and recovery
Analytics Capabilities
Technical Analysis
- Moving Averages - Simple, exponential, and weighted moving averages
- Oscillators - RSI, MACD, Stochastic, and other oscillators
- Trend Indicators - ADX, Parabolic SAR, and trend indicators
- Volume Analysis - Volume-based indicators and analysis
- Pattern Recognition - Chart pattern recognition and analysis
Statistical Analysis
- Descriptive Statistics - Mean, variance, skewness, kurtosis
- Correlation Analysis - Asset correlation and cointegration analysis
- Volatility Analysis - Historical and implied volatility analysis
- Risk Metrics - Value at Risk, Expected Shortfall, and risk metrics
- Performance Analysis - Return analysis and performance metrics
Machine Learning
- Time Series Forecasting - ARIMA, SARIMA, and ML-based forecasting
- Anomaly Detection - Detection of market anomalies and outliers
- Sentiment Analysis - News and social media sentiment analysis
- Feature Engineering - Automated feature engineering for ML models
- Model Training - Automated model training and validation
Tech Stack
- Language: Python 3.8+
- Web Scraping: BeautifulSoup, Scrapy, Selenium
- Data Processing: Pandas, NumPy, SciPy
- Database: PostgreSQL, MongoDB, InfluxDB
- Visualization: Matplotlib, Plotly, Dash
- Machine Learning: Scikit-learn, TensorFlow, PyTorch
- APIs: FastAPI, Flask for data serving
Installation & Setup
-
Clone the repository:
git clone https://github.com/1cbyc/financial-data-scraper.git cd financial-data-scraper
-
Install dependencies:
pip install -r requirements.txt
-
Set up database:
python setup_database.py
-
Configure data sources:
cp config.example.yaml config.yaml # Edit configuration with your API keys and preferences
-
Start data collection:
python scraper.py --source forex --symbols EUR/USD,GBP/USD
Usage Examples
Basic Data Collection
from financial_scraper import FinancialScraper
# Initialize scraper
scraper = FinancialScraper(
api_keys={
'alpha_vantage': 'your_api_key',
'oanda': 'your_api_key'
}
)
# Collect forex data
forex_data = scraper.collect_forex_data(
symbols=['EUR/USD', 'GBP/USD'],
timeframe='1h',
start_date='2024-01-01',
end_date='2024-12-31'
)
# Collect crypto data
crypto_data = scraper.collect_crypto_data(
symbols=['BTC/USD', 'ETH/USD'],
timeframe='1d'
)
Real-time Data Streaming
from data_streamer import DataStreamer
# Initialize streamer
streamer = DataStreamer()
# Start real-time streaming
def on_data(data):
print(f"Received: {data}")
streamer.start_streaming(
symbols=['EUR/USD', 'BTC/USD'],
callback=on_data
)
Technical Analysis
from technical_analysis import TechnicalAnalyzer
# Initialize analyzer
analyzer = TechnicalAnalyzer()
# Calculate technical indicators
indicators = analyzer.calculate_indicators(
data=forex_data,
indicators=['sma', 'ema', 'rsi', 'macd']
)
# Generate trading signals
signals = analyzer.generate_signals(indicators)
Data Storage and Management
Database Schema
-- Market data table
CREATE TABLE market_data (
id SERIAL PRIMARY KEY,
symbol VARCHAR(20) NOT NULL,
timestamp TIMESTAMP NOT NULL,
open DECIMAL(10,5),
high DECIMAL(10,5),
low DECIMAL(10,5),
close DECIMAL(10,5),
volume DECIMAL(15,2),
source VARCHAR(50),
created_at TIMESTAMP DEFAULT NOW()
);
-- Technical indicators table
CREATE TABLE technical_indicators (
id SERIAL PRIMARY KEY,
symbol VARCHAR(20) NOT NULL,
timestamp TIMESTAMP NOT NULL,
indicator_name VARCHAR(50) NOT NULL,
value DECIMAL(10,5),
parameters JSONB
);
Data Processing Pipeline
- Data Collection - Collect data from multiple sources
- Data Cleaning - Clean and validate collected data
- Data Storage - Store data in appropriate databases
- Data Processing - Calculate technical indicators and analytics
- Data Serving - Serve processed data via APIs
Visualization and Reporting
Interactive Dashboards
- Real-time Charts - Live market data visualization
- Technical Analysis - Technical indicator charts
- Performance Metrics - Performance and risk metrics
- Correlation Analysis - Asset correlation visualization
Automated Reports
- Daily Reports - Daily market summary and analysis
- Weekly Reports - Weekly performance and trend analysis
- Monthly Reports - Monthly comprehensive market analysis
- Custom Reports - Customizable report generation
API Endpoints
Data Endpoints
GET /api/v1/data/{symbol} - Get historical data
GET /api/v1/real-time/{symbol} - Get real-time data
GET /api/v1/indicators/{symbol} - Get technical indicators
POST /api/v1/collect - Trigger data collection
Analytics Endpoints
GET /api/v1/analysis/{symbol} - Get market analysis
GET /api/v1/correlation - Get correlation analysis
GET /api/v1/volatility - Get volatility analysis
POST /api/v1/forecast - Generate price forecasts
Project Impact
This scraper has been used for:
- Trading Systems - Data feed for algorithmic trading systems
- Research - Academic and industry research
- Risk Management - Market risk analysis and management
- Portfolio Management - Portfolio analysis and optimization
Future Enhancements
- Alternative Data - Integration with alternative data sources
- AI/ML Integration - Advanced AI/ML capabilities
- Cloud Deployment - Cloud-based data processing
- Mobile App - Mobile data access and visualization
- Real-time Alerts - Real-time market alerts and notifications